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ABSTRACT

- A two-step combustion process, consisting of monopropellant (i.e. one-

reactant) burning followed by bipropellant (i.e. two-reactant) burning, Is

considered. The original reactant, namely vapor from a liquid droplet, decom-

poses into a fuel that combines with oxidant In the surrounding atmosphere.

Complete responses M(D11,D ) of the evaporation rate K of the droplet to

the Damkhler numbers D1 ,D 2 of the two reactions are determined in the limit
2V

of large activation energies. Conditions under which the response is mono-

tonic or multi-valued (thereby exhibiting auto-ignition and auto-extinction)

are identified. Previous conjectures, based on Damkhler-number asymptotics,

are found to be mostly correct.
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SIGNIFICANCE AND EXPLANATION

Asymptotic methods are responsible for remarkable advances in combustion

theory over the last decade, however they have been largely limited to single-

step reactions. This paper uses such methods to investigate an example of

multiple-step reactions, which are of greater practical interest.

The following two-step process is considered. Vapor given off by

evaporation of a liquid droplet decomposes into a fuel. (This decomposition

constitutes the first step of the combustion.) The fuel produced then reacts

with the surrounding oxidizing atmosphere in the second step. The burning of

a hydrasine droplet in oxygen is an example of such a reaction.

The goal of this investigation is to determine the evaporation rate since

it measures the rate of consumption of the reactants, a quantity of primary

interest in the applications of combustion theory. This is accomplished by

using the method of matched asymptotic expansions based on the physically

realistic limit of large activation energies. Evaporation rates which are
'.4 -

proportional to the droplet surface area or to its radius are found. In slon For
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DROPLET DECOMPOSITION ZN A REACTIVE ATNOSPHER:"
COKPLBTE RSPONSES FOR LAEGZ ACTIVATION ZNERGIES

H. V. McConnaughey and G. S. S. Indford

1. introduction 0

The central question of combustion theory is to determine how fast the reactants are

consumed. When there is a single-step reaction this amounts to determining the burning

rate N as a function of the so-called Damk6hler number Dr other parameters may be -

Involved, but they are supposed to be held fixed. For example, consider the bipropellant

"" (i.e. two-reactant) burning of a fuel droplet, in which the liquid in a spherical droplet

evaporates at its surface and the vapor is oxidized by the ambient atmosphere In a ]
concentric reaction zone. The Daek6hler number depends notably on the rate of chemical

reaction, the ambient pressure, and the radius of the droplet; any of these can be used to

*' vary D. The response M(D) is to be found for various values of three additional

parameters: the droplet temperature T5 , the ambient temperature T 4 , and the latent

heat of evaporation L. The shape of the response curve depends on the (fixed) values of

T.-? and L.

In general, the analytical determination of M(D) is prevented by the nonlinearity of

the governing equations, which persists in the (Arrhenius) reaction term even when simple

geometries (such as that of the droplet problem) are adopted. The Arrhenius nonlinearity

has been overcome by asymptotic methods, in which the activation energy 8 tends to

infinityi this is a physically realistic limit since many reactions of interest in

combustion do have large activation energies. For the fuel droplet this leads to

monotonic, S-shaped, and (for the practically unimportant case -C Ts ) C-shaped response
5

.5.:
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curves, depending on the values of T. T- and L. Similar results are found for the

monopropellant (i.e. single-reactant) burning of other droplets, in which the vapor

decomposes into products in a concentric reaction zone. (See fuckmaster and Ludford (1,

pp. 100 and 127].)

Asymptotic methods are responsible for remarkable advances in combustion theory during

the last decade, even though they were largely limited to single-step reactions. A recent

account of some of these successes has been given by suckmaster and Ludford (2]. Neverthe-

less, the need for a more thorough treatment of multiple-step reactions has been recognized

for some time, and isolated efforts are now being replaced by broad action.

The simplest problem of combustion theory is the steady, unbounded plane flame, and it

is natural to begin an investigation of multiple-step reactions there. That restricts the

discussion to premixed flames, i.e. the combustion of reactants that are already mixed,

because plane diffusion flames, in which the reactants are originally separate and must mix

by diffusion, only exist when limited in extant. Tn order to extend the existing

discussion to diffusion flames, we have therefore adopted a spherical geometry which,

because it is still one-dimensional, introduces a minimum of complications.

The multi-stop reaction that we have chosen to examine is a combination of the mono-

•* propellant and bipropellant reactions mentioned above that also has practical interest.

Vapor from a droplet decomposes at a premixed flame into a fuel (and possibly other

products) that is oxidized by the ambient atmosphere at a diffusion flame (Figure 1). The

omplete response of the burning rate to the two Demkfhler numbers DID 2 is determined as
-4

the two activation energies 61,02 tend to infinity. (An atmosphere hotter than the

droplet, i.e. % > ?al is assumed since the reverse is not of great practical interest.)

A popular experimental study of this type of hybrid combustion investigates the

burning of a hydrazine droplet in an oxidizing environment. Variation of the evaporation

rate with droplet diameter or with pressure are typically measured (Dykema and Greene [3],

Lawve (41, Iosser and Peskin [51, Allison and Faeth (6]). Hybrid droplet combustion is

also mentioned by Williams (7, pp. 246-71, who points out the need for theoretical

investigation of the process. Our results can hardly be compared quantitatively with such

-2-
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Figure 1. Schematic representation of droplet whose vapor decomposes in a reactive

environment. a s onopropellant vapor, f =fuel, o oxidant, P =products.
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experiments, but their qualitative features suggest that more extensive experiments should

be made.

Theoretical work on the problem has been done by Fendell (8] and by Buckmaster, Wapila

and Ludford (9]. Both these investigations are based on Dankher-number asymptotics, i.e.

large or mall DI and large or small D21 hence they can described at most the *corners"

of the complete response surface H(D1 ,D2 ). Fendell identifies the resulting burning-rate

formulas, while Suckmaster et al. clarify and add to Fendell's results, suggesting how the

valid corner values are connected by the "edges" of the response surface M(DI0D 2 ). The

latter authors acknowledge the tentativeness of their findings and the need for analysis

with finite D, and D2, recognizing that "such analyses can be carried out when the 'S

activation energies 1 and 0 2 are large, but such a description is quite

complcated...M.

Details of the complication have been excluded from our account as far as possible.

Of the 18 types of asymptotic solutions we describe just 3 typical ones, relegating the

supporting analysis (in the main) to impressionistic appendices. However, the tables and

figures do give a complete picture of the results and further information can be found in

NcConnaughey's thesis (101. Finally, the results are shown to agree with earlier, well

established findings, and 4re compared and contrasted with the conjectures of uckmaster et

al. [9).

2. Formulation

The problem formulation and notation of Suckmaster et al. [9] is adopted. The

governing equations in dimensionless form are

L(Ym) D Ol L(Yf) - 0l 1 + D22 L(Y o) - D22# L(T) -DI W1 - QD2 2  , (2.1)

where

L S d2 /dr2 + [(2r-m)/r 2 d/dr, w1 Y exp(-el/T) 02 YfTo exp('e2/T)

and the other quantities are defined in the list of symbols. The boundary conditions are

dY dY dY
• r Is - M(Y-)d MYf d 14Yo = 4L, T To (2.2)

4 r d r) = f dr 7r4  ML ?

-4-
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r -z T,- 0, 
*t 

a 0, T 0 rom, T - . > '(

A derivation of this model In sketched by NeConnaughey (101, based on a more general

develoment given by Duckmaster and Ludford [1].

- Equations (2.1) can be combined and integrated subject to (2.2) and (2.3) to yield the

Ihvab-Zeldovich relations

Y a + - T 0 + - (o) ) "/r (2.4)

-N/rY +  To +T - LT - T +L-I+QY )e F (2.5)
3 0 a a f

which are valid everywhere. Thus only two of equations (2.1) are needed. We select

equations (2.1a) and (2.1d) and the corresponding boundary conditions to form a fourth-

order system subject to five boundary conditions. The unknown constant K is thereby

determined an a function of the various paramters which appear.

The objective of this work is to describe the behavior of N(DOD2 ) for all values of

its arguments, by considering the independent limits * and 02 + f.

3. Aswmettics and tssults

in accordance with the usual strategy of activation-energy asymptotics (Duckmaster and

Ladford t1lt Kapila and Ludford [1), the Damkbhler numbers are written

Di . D! exp(Oi' 1 ), i - I or 2 , (3.1)

where is a positive parameter and DI is at most algebraic in 0,. The ith reaction

term then contains the expression Di exp(ei/Ti-e£/A) and the limit Si + - confines the

- associated chemical activity to a thin layer either at temperature TO Ti with

2
thickness of order T /6. or at temperature Ti, > Ti with thickness of order

expte(e iL.e/2 i)], where c = 1/2 or 1/3. The reactions are negligible outside of

these flame shets, hence the majority of the combustion field is described by the linear

system

L(Y) - L(T) - 0 ( (3.2)

Hatched asymptotic expansions are then used to describe the solution inside and

outside the flame zones.

-5-o
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'U 3.1. *solution Cateecries

fth solution obtained by this method depends on the assumed flame oonfigurat~ee and

-; flame types. With the location of the decomposition reaction denoted by ri and w~th the

bipropallant flame at r2 , it in found that all possible configurations for whick

1 1~ 2 (*admit a solution. Whthe r or not V 3 ri), Y .(r.) ezdY(r 2 ) vanish as

S 0 determines the nature of the flames, which is often not unique for a given fLame

arrangement. Benco, for each configuration, it is necessary to consider separately the

*various types of flames possible, i.e., partial vs. complete decomposition at r, and a

complete-burning (or so-called Darke-Schumann) diffusion flame vs. a partial burning fI.u

at r 2 . wn all possible combinations of flame locations and types are investigated, the

cases shown in Table I are found to admit solutions of interest. (Other conceivable cases.

me Noconnaughey [101, are omitted, they correspond to special cases whose treatment has

been omitted for simplicity.) The first thirteen categories represent separated flames fow

which N - 0(0)i the next four correspond to merged flames with K - 001); the Last is

the only configuration for K >> 1.* The asymptotic analysis of these different

possibilities in illustrated in the following sections and associated appendices.

* 3.2. Separated Flames with N - 001)

Solution category 6, which is illustrated in Figure 2, is conaiderO here. The

reactioniess system (3.2) is valid for 1 < r < VII rl < r < r2 and r2 < r < -1 the

leading terms of the corresponding asymptotic expansions areVI

'.6r
N/1-0/r, N -N/r

I~ < 1 a 0 o-L+T 33

-/r
2 m 0 -L*1( + ~ I +( Ta+)e

where conditions and relations (2.2) - (2.5) have been invoked as have Y,(r,) o al),

Yf(r2) - o(l), Y,(r2) -oCI) and continuity to leading order of Y., Y f and at r

and r2.

.4N
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"Ile: DIeserlition and eategorization of tlames wh.ich dL-lt
solution of Lnterest.

Solution

category Descri tiou

.1 r1 -1 4 r2 c a& Yt(r2 ) = a(1); Yo(r2) * o(1)

2 r - a •r. (r2) o1); Y (r2m01

1 r2 fc a 2t 2) =

3 r 1 01 4r 2o a% Tl(r2 a 0(1);; yo(r )- o1).

h m 1 ' 2'0; Yf(r2) "o(l); YO ) o0(1)

Z~~r.a 1 ;• r ;rl z  () or1•oz
S1 -c r2 ; 

- 3(r1) * o(l); Yt(r2) (1); Y (r2) 0(1)

-c rl • r.4 -; Y(r2) - o(i); Yo(r2) - 0(1)

, 141 0 co;Y(2 = -  r 1  1 2
4 ri -• c r2 -a;Y(ri 1 - o111 Y,(r2) a 0(i); Yo(rd) o111

l "r1 2 r2

*0

9 1 I r1 r2 - Yf(r2) 0(1); Y (r2) - 01

10 1 'cr. c12U0 5 1)O1

1. 1. ' 1 - 124 •- 0(1)0 (flr)) Y o (rd, aft2 )01)
12 1- '4 r. <7 4 mg T'(ri a 0(1)1 Yf(r2) 0 ();Y(

13 N 1 r2  iY(1r) Oft)

3L r

2°

1 ' r3. - r I 2 4 ,' "2 - 8 Y a (r 2)" .(.

16 1 t r, r 2 4 - (r,) a0(1)9 Y,(r2) - a(1); Y (r)01

3032)3r.1)
1? 11012

'S.
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since Ts(r) V 0 for r < rl, the temperature must be lees than T, in that region,

for otherwise the reaction term DY m exp(1/Tl-O1/T) would not be negligible there. In

order for the reaction to become important at r1  then, we must have T(r 1 ) - T1 > To.

Given this and continuity to leading order of T at r1  and r2 , the solution shows that

N/rl T -T +L-4Q¥O T 1 -T +L /r 1  er 2 "" T LI ~ -")e . e - 10+T N .
1+ Y

T 1

The outer expansions alone have therefore determined N, r1  and r 2  as functions of

74 various parameters. Zn order that these results be consistent with the hypothesis

I < r 1 < r 2 , the following conditions must hold:

L > 01 T -L+I < T 1 < Tr 2 )or Tr 1 < T < T -L+I (3.5) IN

where T(r2 ) - [T C+Yo(T-L+I+Q)]/(I+Yo)

it is also necessary to examine the structure of the two flames in order to discover

what additional conditions restrict the validity of the above results. Such restrictions

amount to existence conditions for solution of the inner problems at r1  and r 2 , where

the expansions must match the outer ones. The associated analysis is sketched in Appendix

1 and adds the requirements

T2 CTBS; T >T-L+ - when T >T
2T t 'It

This completes the investigation of category 6. In a manner similar to vhat just

demonstrated, the solution in each of the separated-flame categories 1-13 along with

restrictions on its validity are determined. The burning rates are listed in Table 2 and

the supporting analysis has been given by McConnaughey [10].

3.3. Merged Flames with N - 00)

The outer problem for merged flames (Figure 3a) is much the same as for separated

flames. The analysis of merged-flame structures, on the other hand, is not a straight-

forward extension of the inner problems associated with separated flames. Both reactions

-9-
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Table 2z Sarningr-rate formulas for aanarated-f Lme categories in Table 1.

l nt(T.-T,+L-1OQYO.)/(L-1)I

M2  - InDUT -T 4-)TT4.1Q/L1( T*--)
22

K4 - n1 (2

2.

At(T 1 -7 a)(T.-T a +-14QY .)/L(T - +L1-)]

M7 - nI(T 1 -% 1) (T 2 -T a*L-)( I 7 +L- I-Q) /L (T -%+L-1)(7 2 -T+L--Q)J

as, - Inr(T 1 -I 3 +L)(UT 2 -T,--% .L-1)IL(Ti-T a+L- )]

N1 0~~ -n(T-141)(T -T* +L-1)/L(T -T +L1)]

In InOT -? -T 41.-QY, )/Li

m 12 ' Ni

M13 - In((2T -T -Tm+L)/LI

1-10
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now occur at the sme 01) location, and the problem becos analytically intractable, in

general, if they are indistinguishable. To circumvent this difficulty, a model of the

merged flame is considered in which the two reaction zone@ are distinct, with thicknesses

of disparate ordors. The thinner flame is embedded in the broader flame and appears as a

discontinuity on the scale of the thicker none, as shown in Figure 3b. This model was also

used by Wapila and ludford (11. I n the present work, the flames for which the

deo0oosit ion-reaction sone i the thinner one are referred to as Type A flames those with

a comparatively narrow diffusion flame are called Type 3 flms.

A third kind of merged flame is also considered. In this Type C flame, both reactions

are spread over the ms o(1) interval at r*, but the structure problem becomes

tractable by assuming that the right and Left side of the fuel equation (2. 1b) are of

disparate orders. This requires that Yf be small and that the right side dominate

equation (2.1b). The situation thus described is a decomposition reaction in which very

*" little fuel is produced relative to the amount of monopropellant present, and whatever fuel

is produced is immediately consumed by the bipropellant reaction.

The kinds of structure problem which remlt from the models described above are

illustrated in Appendices 2 and 3. which consider the structures for solution category

15. The outer solution and structure reslts for that category are as follows.

&Lmma that the monopropellant and bipropellant reactions both occur at r - re,

with I < r. < -, and that To(r.) - o1), Tf(r.) - o1), Yo(r*) - 01). The 01)

solution of (3.2) which setisfies thee as m-tlons and conditions (2.2) - (2.5) is then

N/C*-Ir V
1<r r T m r < . 1- T -To -L Loe /r (3.6)

r* < r < 64 Y" 0, T T a -L+14Q+(T.5 - -- )e (3.7)

In order for the decomposition reaction to take place at r*, the temperature there

muot be T1, with T1 ) To. It follows that

N/r, T -T +L-I-Q T -T +L Mt/r,
W a a N (3.8)

T1-%+L- -1 - L

.. . . ., . , .. .. .. .. . .. - . . .. . . .. .. . .. .. . , I . . .. .
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ConsiAtency with the hypothesis and nonnegative mass fractions requires either

L ), 0 ,ad m(?,*? ai-L+t'+Q,T as) < T 1 I

or

L and T < T1 < min(T -L+14Q,,T3 8 )

"s ince . can vanish for r 91 r*. the bipropelant reaction can occur at r. if T2

does not exceed T.

The flm structures mast now be analysed to uncover additional constraints on the

validity of the above results. Appendices 2 A 3 treat the case where T2  is less than

TI, hence only Type A and Type C flames are considered. (Type a flames do not exist for

T2 < T1 , as my eaily be shown.) It is found that the results (3.6) - (3.8) are valid

f or
L > 0, T < T, 1 ndx-(TsTs-L+,Q,T ) < T < T. or

i~I (3.9)
maxT,,T a-L+(I Q)/2] < T1 < in(T -L+I+Q,T 8)

An approach similar to that just described yields the results shown in Table 3 for

merged-flame categories 14-17. Details of the analysis are given by NoConnaughey (10].

Table 3 D urninr-rate formulas for merged-flame catecories in Table I

N14 - An[(T-T,+L-I-)/(L--Q)-

R15 - £tn((T 1 -1 +L)(T.-Ta+L-I-Q)/L(T 1 -TL--1-)

N1 6 "N13i

N1 7 - n1(T-T 4L)/L ]

3.4. N >>

For N >> 1, relations (2.4) and (2.5) become

To + Yf-o - 1, YU QYO + T -~L+I (3.10)

rfor r < 0 while equations (3.2) imply that Y. and T are constant outside of the

flames, which is incompatible with the boundary conditions (2.2). There must therefore be

-13-
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a reaction eons at r - 1. In addition, equation (3.10a) can only be true if Yo(r) - 0

everywhere, sin the sun Yn + Yf + To cannot exceed unity and Y 0 0 (by definition of

ma" fraction). But this violates the condition - Yoe at r'' so that there mut

also be a layer at r -n*. Clearly the remote reaction must be the bipropellant reaction,

while the decomposition reaction occurs in the surface layer and entirely consumes the

monopropellant there. aence,

S0r) , T(r) T.-L+1 for I < r <

m s

The analysis of the reaction zones is gives in Appendix 4 and leads to
N N 9-,~~(T8-L+I)2exee1 (To-L+I-T /T(T_1))(.1

.: which is valid for

0 < L < 1 and T1 < T-L+1 . (3.12)

4. Discussion of ,asults

4. 1. escriction of R ults

Considering the limit of large activation energies yields an 0(1) burning rate N

in solution categories 1-17. The dimensional evaporation rate N thus varies with the

dimensional droplet radius ;, i.e.

Ni n -a , (4.1)

where k is a constant with appropriate units. Solution category 18, on the other hand,

-1
gives N - for sufficiently large in which case

,4 -12 (4.2)

Note that this Is only possible for L 4 1, i.e. when the heat of dercmposition exceeds

that of vaporization, but in practice this is almost invariably the case of interest

(Ludford, Yannitell and Duckmaster [121).

It is well established that (4.1) holds for pure bipropelLant burning and for

decomposition of smail droplets in an inert atmosphere, while (4.2) holds for simple

decompositional burning of relatively large drops (Williams (131). gXperimental evidence

of the relation between N and a for the hybrid combustion problem considered in this

- " -. . . . . . . . . ... . .. .- . • . o . -, + , . -".. -,................+ ' .+. ..'++ . '"". .+;-' .- i+ .?. . "- .• + - + - " •-
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work, however, is limited and inconclusive. Investigations of the decompositional burning

of a hydraszie doplet in oxygen do suggest, though, that (4.2) in satisfied for all but

the smallest droplets, when (4.1) holds (Dykema end Greene [311 Rosser and Peskin (511

Allison and V'eth [61).

An increase in droplet diameter results in an increase in the reaction rates D"

and D2 . (Recall that it is the variation of N with D1 and D2 that is sought

here.) Definition (3.1) indicates that the response M(D1 ,D2) may be described

qualitatively by the behavior of N(T1 'P;). The latter is deduced from the results

reported in (3.11), Table 2 and Table 3 by allowing T1 and T2  to vary in the burning-

rate formulas while all other parameters are held fixed.

Different responses X(N!1 ',72) are found in each region of the parameter plane shown

in Figure 4. The domain of the response associated with selected region* is shown in

Figures S. Figures Sa-Sc show that N(T 1 ,T; 1 ) is a single-valued function when T.-T

is positive and greater than -L+I+Q. The resulting response surfaces are found to be

continuous and monotonically increasing with T 1 and T. , as illustrated in Figures 6.

For any point on these surfaces, the flame temperatures do not exceed the ambient

temperature T, and heat is gained from the atmospheret the decomposition at r, is

complete and all fuel is consumed at r 2 .

When 0 < - Ts < -L + I + Q is satisfied, the function N , )is multiple-

valued over part of the domain, as illustrated by Figures Sd-Sf. The flamo temperatures

are no longer bounded above by T. and heat is now lost to the ambient. Deoomposition

at r, is complete in Magions XV-VIIu it is only partial in Regions VII-XIV for certain

values of T1 and T2 . In Regions IV and V, the fuel is entirely oxidized at r 2 , while

portions of the responses associated with Regions VI-XIV correspond to partial fuel-burning

diffusion flames.

The multivaluedness of WTiT 2
1 ) is manifested by the appearance of folds in the

response surface, as seen in Figures 7, and oorresponds to the phenomena of auto-ignition

and auto-extinction of one or both reactions. The lower turnaround point in a constant-'T1

(or 72 ) cross-section of the surface is the ignition point at which the solution jumps

-15-
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AB C A B D
Figure 5a Figure 5b

T2 REGION M

MM1 4
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M7

M.* Mt M5
17 M10

T
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Figure Sc

(See caption on page 19.)
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REGION XII
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M "
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.i
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E M M Mf6  M10 9

MM6SM_ M MM M1

17"
--17~ M ,9MIS

B C A pige 5f

Figure 5a-f. Buning-rate formlas which hold in Regions It Ile III, IV, V, xII and

their respective domins; shaded areas are detailed at right. A - T.
-1 -1 ;1 1 (-l)/2]-

1  2) "1 ,
-TBS C - (T -1*1) ,D - T o " F- (T,,eQY 0/ -"

- valid only for 61 >> 02"
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A B Figure Ua

Figure 7a. (See caption on page 25.)
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Figures 7a . Response surfaces in legions IV, V and XI respectively. 
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from a neatlY extinguished State up to an ignited state as T
T2 (or )l is icreased

through its local maximm The upper turnaround Point is the extinction point where the

-~~ solution Jumps from an ignited state to a weakly reactive, nearly extinguished "tate a

2 (or i,) is decreased through its local minimum. The middle level, which is

* bypassed, is believed to be unstable since it implies a decreasing burning rate with

increasing reaction rate or pressure (Duckuaster and Ludford (Ill Kapila (141).

The responses in Regions IV* V1# V111 and X differ only in their middle level, hence

the realizable responses in these regions are the same. Similarly, Regions V, V11, IX and

ZI share responses which are effectively the same, as do regions XII-XrV. Figures 7a and

7b thus indicate for Regions IT-I! the possibility of ignition andl extinction of both

reactions simultaneously or of the bipropellant reaction alone. Figure 7c shows that where

.1 ignition and extinction occur in the response of Regions lUI-KIV, they occur in both

reactions, ignition being possible only when the diffusion flame is remiote.

* 4.2. Comrison with Related Works

Three eodgesm of the response surfaces found here represent previously addressed

problems, so-that related results may be compared.

The bipropellant reaction is found to be remote for 0 < m2 inT,, 1 )i the

burning rate is then controlled by the decmpogsition reaction alone. The corresponding

* -' edge of the response surface therefore describes pure monopropellant decomposition. That

problem has been considered by LLnan (151 and by Ludf oral, Tannitell and Suckmastor (121 in

'athe limit of large activation energy. For T~ 2 < , the work of Lualford et &1. produces

'athe burning rates N S, N10, N1 3, N17  and NIB in the same regions of the -T vs.
'aa

L parameter plans and with the same domains as found in the present work for

T;' <mn' 3 8  Similarly, there Is agreement between the associated response curves

* N(D 1 ) obtained by Zlaford et &1. 112] and the constant-! 2 cross-sections of the response

surfaces found in this work for T! < Linan (151 obtains the above expressions for

no but does not specify the parameter values for which each is acceptable.

-26-
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Next, it my be noted that for (I < T a and L > 1, the decomposition flame is

sitting an the droplet surface and the problem in 1 < r < - is that of an ordinary fuel

drop at temperature ?t but vith latent heat L-1. Appropriately modifying the results

of law (161, obtained via activation-energy asypVtotics, yields burning rates M1V M21 M4

and ngs the corresponding response curves 6(D2) are consistent with the constant-?,

cross-sections of the response surfaces found here for L > I and TI < To.

Finally, the results of Suckmaster, Wapila and Ladford 191 are considered. As

mentioned earlier, theme authors used DwAkahler-sumber asymptotic@ in their treatment.

They were thus able to determine only the three "corerst

Lin "(D1 D2 ), Lin ilia N(D 1 .D 2 )], Lin ilia (D 1 D2 )]
D1 ,D2 ' 020 DI 1*O D2-

of the response surface. 1the expessions MI, R, U14 a and 17 re wa*obtained. Fomla

Ni was also found by considering the liit 01 *. fo 9 >> 1. More precisely, they

found r "
.,Is for L CI

D 1 -D1hMA N(DIOD2  N~ for I <L < I+ Q + (T-Y)

n for L > 1 + Q + T-(?.-T)

lin (lie(DD 2  
(H for L < I

D+0 0 HS for L > 1
2 1

Lin fli ( NID 1 ,D2 )) - 17

1 2

in agreement vith the corresponding corners of the responses found in the present work.

Discrepancies exist, hower, between the nature of the curves connecting these corners as

conjectured by Suckmaster et al. and the curves dictated by the finding of the present

work, as illustrated in Figures B.
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An€endiz 1 Structure Analysis for CtASSIOry 6

Donoeoition-rlame Zone

The problem within the decomposition flame, given by (2.1a,d), (3.3) and (3.4) is

d2x /2 2 x/2 i-xpx

a%/dC _r2li/dC nwx _T+ex /r2 n

2 2

' /dC 0, xt=/dC e n(T,-TL-I)/r, as C * 4-

where

r - rl + c -C T2 A < , T2 € - 0(1)

* T* CxW(C) + o(C), T 71 + Cxt() + o(e)

This may be rewritten as

2d, ai 1x
-Ias y V+O as Y+" &ii

where y M C/r~ E.1 atn(27;r4,2 ) a - (Y.,-T +L-1) and sois an undetermined

* constant. sounlsry-value problm (AI.*1) has been treated numerically by Lin~n [171 whose

results indicatea that a solution exists provided

?IToT 5 L +1/2 if x,.>)0 as 44

T Y 1 T L+ I if x 3 0 as .4

Diffusion-Plasm Zone

The following bolds in the diffusion fl ame .

T Sbo + o(6), T Tg *8yt(I1) + o(6)

*d 2yt/.1, 2 - -QD2fYTaxP( 2/2 ,/' (A1.2)

2"'6 ~utb b 4  a n~4

2,~~ )/,2 b

where y1 - (rr/SS+ 1 )]i a ngtv con-st Ian T2 (s T3 n bnetrmne -

nta, ( L-I-Q)ep(4/r 2 )/r 2 b 2  H(T1 -T a4L-b4Qe Y)exp( -n/r 2)/r2, and b 4 are

% 4. % d- %

........................~..........+.....%

4. ~ ~ .. - - .. - T,.-L + ...... 0....+4e... . .. ... . .

.... ... .... ... .... ... .... ... .... ... ...



undetermined constants, and Y. and Yo  are given by (24) ad (25). Consider
. ~T ? sr 8 Then MA) may be written an

dy/d x_ y  tx as x W.3)

.* whor

y() yt() - (b,+b2 )n/2-(b3 +b4 )/2, x- (b2-b1)l/2+(b3-b4 )/2

and where the small parameter 6 has been chosen according to

S (b2 -b1 )/2]2 (D)-Q exp(O2 FDO- 2t' 2 )

Thysical considerations require

y < -lxJ for all x • (AI.4)

Nquation and boundary conditions (Al.3) constitute the standard structure problem for

a Zorke-Schhmans flame which has been shown by iiolmes (18] to possess exactly two

solutions, only one of which satif ies (A .4).

Annendix 2 a Structure Analysis for Category 15, TVe a Flames

Difbu ion-Plam Zone

The appropriate expansions in the bipropellant-resation sone include

r - r. * +wa, T3 - lys(TI) + o(a), T - Tl+ayt(n)+o(a)

where 2 - D yooexp(e 2 f 2 -e/ 1 ), /1O - To(r.), SI >> exp(e2 ) with > O, yt < 0 for

. q 'Yt " 0 at n, Yt < 0 or 0 for n > * with ?I. the Location of the

decmposition reaction. The function ye(T) thus satisfies

2dy dy ++
-- 0 O(1) for n L as n +,0 as 4-0
2 > "d 2 'didi2  r.

Continuity of Y," Yt and d(ya+yt)/dn at n, is required, therefore

f q/< y . - for n > n,

-t 
) an di - I (n+) + ! (A2.1)

where the constant c0 is undetermined. The equation for yt becomes

-32-
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62 22 2", yt/d"2 tcn,d' /42 - yt-c w1-c2  for II < . - Yc3-% for WI ) WI. . CA.2)

2 2
where c- NI 1-Ta+L)/r,, €3 - N(T 1-T,+L-I"Q)/r,, c4 - (c1 -c3).+c 2  and c2  is

detArmined by matching higher-order term. The solution of (A2.2) mst satisfy (A2.1) as

well as

dyt/dn + c, As " -do, dyt/n . as n +4 a

it follows that

y"cie + Cn + c2 for 1 < %., yt ce + 31 + c4 for n > n,

2
where -S  - V2r,. The requirement Yt < 0 for n < n, is therefore met provided

TI > 8? - L + Q/2.

Deoneoition-Plame Sone

In the moaoprqoellant reaction at Yj,, the following is valid.

r - r+6%+t, T - Sys +...+ ex L )+oc1, T - T + YO + o11)

where e -/8 y - y(ni, and the components of T. preceding Cx are constants.
a°

For ym, 90O, the problem for xt(9) is

d~xt

.' _;ex x 0> s9 at - 03*c <(0 as +4-
-C ati 5 j*041 C 05a

where D - .6  °; - 001). Integration shows that --

for Ta- o(e) at %I, the structure problem is equivalent to (A1.1) with

a -T L-1-Q/2.

It follows that a "ype A merged flame my exist for category 15 if 01 >> exp(e 2 )

with > 0, and if max --L+I+/2,?2) < T < T. or max[.,Ya -L+(14Q)/2,2] < TV.
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Aseendix 3: Structure Analysis for Cateqorv 15; Type C Flames

The problem in th Type C flame none for category 15 is

2

where T. - aX MC) + o(), T " T1 + ext(C) + o(5), C - (r-r.)/e, C T 1/ 1

;I - C2D; - 0(1) an do is an %ndetermined constant. This may be rewritten in the form

of (A1.1) and a solution thus shown to exist provided T I >max[Tw,T -L+(1*g)/2] or

T -L 14Q< 1  .
a

The sam11 mount of fuel produced in the decomposition reaction is

I f - CDO1xe0 t/CU which is indeed o(C) since T 2 and1 2"

">>2

Appendix 4: Structure Analysis for Category 18

surfae layer. .--1

The region adjacent to the droplet is described by C - Y (r-1) with y << 1, and

the burning rate N is of the fozm N - Y N where N - 0(1). Within this layer, the

following holds.

5-.., ~, -.) + o(,) T -,() + o*0), t T .-+1-. .- ,

aa
N y2Dim exp(0 1/T-6/t), N 3m-i) -NL, a -i-L at C =0

J Let label the smallest value of C at which t(C,) - t, - max(t(C)I take 1-,

-1/2(D;ep(61 $N-e /t,)I and require TI < t,. Then the decomposition reaction occurs at.4.
r I+yC, and

- 1-exp[N(C-C.)] for C < C,, m - 0 for C • C,, . I -tnL
.- 4'

The structure problem at C, is given by

2
d x

-iDxexp(-x),x a-WC as t.+ ,xa - 0 an C + +-2 ,;.m ,.., .a ,m+o++ . ++

2where C - (9-)/', a - t./s,, Y - (x t) + o(s), Y - t.-ax () + o(C) and
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2 ID; 0(1). Therefore, N -Ai which speifieo N. This result is valid

provided L < I and T 1  T 5 -L 1.

he coordinate of the remote combustion field is3 - yr. and the bipropellant

reaction is located at R.. The temperature equation, givem by

d2 T/M 2 + ((2Ri-.)/ 2jdT/@ - .. '-

is reactionless; for a 0. 3. and for any 01 >> 1, % )> I provided the profut Tf o

vanishes for I 0S 7t. The bipropellant-reaction sono is onmceqently a varke-fUomn

diffusion flame with To - 0 for R < R. and Yf - 0 for R ),. *Omtinuity at Re

fixes the value of R&.

The etructure problem at R. has the form of (A1.3)' hence a solution Oets and so

additional restrictions need be imposed.

i
S
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V..7

List of Symbols

dimensionless quantities:

YJh mass traction of species Al A a , f or o

T temperature

-2 iDi Dsmkhler number, varies with p i I or 2

61 activation energy

ii
Qratio of the heat of combustion of the bipropeilant reaction tothat of decomposition

evaporation rate (-burning rate-)

r radial coordinate

i L latent heat of evaporation

DI' D[ - expl- i /T i

Ti  positive parameter characterizing the magnitude of D

dimensional quantities:

a" radius of droplet

p pressure

N evaporation rate, varies with aN

subscripta:

3 acopropellant

f fuel

o oxidant

I pertaining to decomposition reaction

* 2 pertaining to bipropellant reaction

9 surface value

- ambient value
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